Semi-Supervised Bootstrapping of Relationship Extractors with Distributional Semantics

نویسندگان

  • David S. Batista
  • Bruno Martins
  • Mário J. Silva
چکیده

Semi-supervised bootstrapping techniques for relationship extraction from text iteratively expand a set of initial seed relationships while limiting the semantic drift. We research bootstrapping for relationship extraction using word embeddings to find similar relationships. Experimental results show that relying on word embeddings achieves a better performance on the task of extracting four types of relationships from a collection of newswire documents when compared with a baseline using TFIDF to find similar relationships.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Semantic Pattern Discovery with Guidance from Unsupervised Pattern Clusters

We present a simple algorithm for clustering semantic patterns based on distributional similarity and use cluster memberships to guide semi-supervised pattern discovery. We apply this approach to the task of relation extraction. The evaluation results demonstrate that our novel bootstrapping procedure significantly outperforms a standard bootstrapping. Most importantly, our algorithm can effect...

متن کامل

Which distributional cues help the most? Unsupervised contexts selection for lexical category acquisition

Starting from the distributional bootstrapping hypothesis, we propose an unsupervised model that selects the most useful distributional information according to its salience in the input, incorporating psycholinguistic evidence. With a supervised Parts-of-Speech tagging experiment, we provide preliminary results suggesting that the distributional contexts extracted by our model yield similar pe...

متن کامل

A Vector Space for Distributional Semantics for Entailment

Distributional semantics creates vectorspace representations that capture many forms of semantic similarity, but their relation to semantic entailment has been less clear. We propose a vector-space model which provides a formal foundation for a distributional semantics of entailment. Using a mean-field approximation, we develop approximate inference procedures and entailment operators over vect...

متن کامل

Trained Named Entity Recognition using Distributional Clusters

This work applies boosted wrapper induction (BWI), a machine learning algorithm for information extraction from semi-structured documents, to the problem of named entity recognition. The default feature set of BWI is augmented with features based on distributional term clusters induced from a large unlabeled text corpus. Using no traditional linguistic resources, such as syntactic tags or speci...

متن کامل

Semi-supervised Relation Extraction with Label Propagation

To overcome the problem of not having enough manually labeled relation instances for supervised relation extraction methods, in this paper we propose a label propagation (LP) based semi-supervised learning algorithm for relation extraction task to learn from both labeled and unlabeled data. Evaluation on the ACE corpus showed when only a few labeled examples are available, our LP based relation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015